منابع مشابه
Rhizosphere feedbacks in elevated CO(2).
Understanding rhizosphere processes in relation to increasing atmospheric CO(2) concentrations is important for predicting the response of forest ecosystems to environmental changes, because rhizosphere processes are intimately linked with nutrient cycling and soil organic matter decomposition, both of which feedback to tree growth and soil carbon storage. Plants grown in elevated CO(2) substan...
متن کاملResponse of Archaeal Communities in the Rhizosphere of Maize and Soybean to Elevated Atmospheric CO2 Concentrations
BACKGROUND Archaea are important to the carbon and nitrogen cycles, but it remains uncertain how rising atmospheric carbon dioxide concentrations ([CO(2)]) will influence the structure and function of soil archaeal communities. METHODOLOGY/PRINCIPAL FINDINGS We measured abundances of archaeal and bacterial 16S rRNA and amoA genes, phylogenies of archaeal 16S rRNA and amoA genes, concentration...
متن کاملTowards a rhizo-centric view of plant-microbial feedbacks under elevated atmospheric CO2.
Forum 664 Commentary Commentary Towards a rhizo-centric view of plant-microbial feedbacks under elevated atmospheric CO 2 The stimulatory effects of elevated CO 2 on plant productivity have been reported for many ecosystems (Ainsworth & Long, 2005), but whether such effects will persist in the face of increasing nutrient limitation is unclear. In nitrogen (N)-limited ecosystems, elevated CO 2 h...
متن کاملEvidence that elevated CO2 levels can indirectly increase rhizosphere denitrifier activity.
We examined the influence of elevated CO2 concentration on denitrifier enzyme activity in wheat rhizoplanes by using controlled environments and solution culture techniques. Potential denitrification activity was from 3 to 24 times higher on roots that were grown under an elevated CO2 concentration of 1,000 micromoles of CO2 mol-1 than on roots grown under ambient levels of CO2. Nitrogen loss, ...
متن کاملResponse of the rhizosphere prokaryotic community of barley (Hordeum vulgare L.) to elevated atmospheric CO2 concentration in open‐top chambers
The effect of elevated atmospheric CO2 concentration [CO2 ] on the diversity and composition of the prokaryotic community inhabiting the rhizosphere of winter barley (Hordeum vulgare L.) was investigated in a field experiment, using open-top chambers. Rhizosphere samples were collected at anthesis (flowering stage) from six chambers with ambient [CO2 ] (approximately 400 ppm) and six chambers w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tree Physiology
سال: 1999
ISSN: 0829-318X,1758-4469
DOI: 10.1093/treephys/19.4-5.313